Dosis de levotiroxina varía según la etiología del hipotiroidismo y el peso corporal
PDF (Español (España))
HTML (Español (España))


dosis levotiroxina
dose levothyroxine

How to Cite

Builes Barrera, C. A., Palacios Bayona, K. L., & Jaimes Barragán, F. A. (2017). Dosis de levotiroxina varía según la etiología del hipotiroidismo y el peso corporal. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 1(1), 27–32.


Objetivo: Determinar las dosis de levotiroxina necesarias para alcanzar control bioquímico del hipotiroidismo según su etiología, peso corporal, TSH inicial y tiempo desde su diagnóstico.
Población y métodos: Estudio de cohorte retrospectivo en pacientes hipotiroideos mayores de 14 años con control bioquímico de la enfermedad.
Resultados: Se incluyeron 518 pacientes, 90% mujeres. El hipotiroidismo primario fue la forma más común (66,3%), seguido por el hipotiroidismo postiroidectomía total (13,1%), poshemitiroidectomía (6,1%), central (5,9%), posyodo radioactivo (5,7%) y postiroiditis subaguda (2,5%). Los requerimientos respectivos de levotiroxina (µg/kg/día) en ese mismo orden fueron: 1,07± 0,48, 1,65± 0,46, 1,11± 0,52, 1,33± 0,6, 1,51± 0,58 y 1,11± 0,72 (p<0,001). La dosis necesaria en pacientes con hipotiroidismo primario se incrementó con el paso del tiempo desde el diagnóstico: menos de 2 años: 0,77 ± 0,38, entre 2 y 5: 0,90 ± 0,40, mayor de 5: 1,07 ± 0,48 (p<0,001).
En pacientes con TSH inicial menor de 10 mUI/L y con menos de dos años de evolución se normalizó la TSH con dosis de 0,65 µg ± 0,33, mientras aquellos con TSH inicial mayor de 20 necesitaron 1,34 µg ± 0,68. (p<0,001). Se observó una diferencia significativa en las dosis requeridas para lograr control de la enfermedad de acuerdo con el índice de masa corporal, siendo menores por kilo de peso a mayor grado de sobrepeso/ obesidad (p = 0,0067).
Conclusión: La dosis requerida de levotiroxina para alcanzar el control bioquímico depende de la etiología de la enfermedad, de los valores de TSH al momento del diagnóstico, del peso y el tiempo de evolución del hipotiroidismo. La dosis necesaria para el control de formas leves/tempranas es menor que la recomendada en ausencia de función residual.

Objective: To determine the dose of levothyroxine needed to achieve biochemical control of hypothyroidism based on etiology, body weight, baseline TSH and time since diagnosis.
Population and methods: Retrospective cohort study with hypothyroid patients 14 years of age and older with biochemical control of the disease.
Results: 518 patients were recruited, 90% of them women. Primary hypothyroidism was the most common form (66.3%), followed by hypothyroidism post-total thyroidectomy (13.1%), post hemi-thyroidectomy (6.1%), central (5.9%), post-radioactive iodine treatment (5.7%), and post thyroiditis (2.5%). The respective levothyroxine requirements (µg/kg/d) in the same order were:
1.07 ± 0.48, 1.65 ± 0.46, 1.11 ± 0.52, 1.33 ± 0.6, 1.51 ± 0.58 and 1.11 ± 0.72 (p <0.001). The required dose in patients with primary hypothyroidism increased as a function of time since initial diagnosis: Less than 2 years: 0.77 ± 0.38, 2 to 5 years: 0.90 ± 0.40, more than 5 years: 1.07 ± 0.48 (p <0.001).
In patients with baseline TSH levels lower than 10 mIU/L and less than 2 years of evolution, TSH was normalized with doses of 0.65 µg ± 0.33, whereas those with baseline TSH levels higher than 20 needed 1.34 µg ± 0.68 (p <0.001). A significant difference was observed in the dose required to achieve disease control. This difference was related to body mass index, as follows: The greater the degree of overweight/obesity, the lower the doses needed per kg of body weight (p = 0.0067).
Conclusion: The dose of levothyroxine required to achieve biochemical control depends on the etiology of the disease, TSH levels at the time of diagnosis, weight, and time since onset of hypothyroidism. The dose required to control mild and early forms is lower than the dose recommended in the absence of residual function.
PDF (Español (España))
HTML (Español (España))


1. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical Practice Guidelines for Hypothyroidism in Adults: Cosponsored by American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid. 2012; 22(12):1200-35.
2. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002; 87(2): 489-99.
3. Devdhar M, Drooger R, Pehlivanova M, Singh G, Jonklas J. Levothyroxine replacement doses are affected by gender and weight but not age. Thyroid. 2011; 21 (8): 821-827.
4. Santini F, Pinchera A, Marsili A, Ceccarini G, Castagna MG, Valeriano R, Giannetti M, Taddei D, Centoni R, Scartabelli G, Rago T, Mammoli C, Elisei R, Vitti P. Lean body mass is a major determinant of levothyroxine dosage in the treatment of thyroid diseases. J Clin Endocrinol Metab. 2005; 90:124–127.
5. Escobar I. Dosis de levotiroxina (T4) para el tratamiento del hipotiroidismo primario. En Sociedad Latinoamericana de tiroides. Libro de resúmenes VII Congreso SLAT, 1997. Página 25, resumen 17.
6. Okosieme O. Thyroid hormone replacement current status and challenges. Expert Opin Pharmacother. 2011; 12 (15): 2315-2328.
7. Olubowale O,Chadwick D, Optimization of thyroxine replacement therapy after total or near total thyroidectomy for bening thyroid disease. Br J Surg. 2006. 93: 57-60.
8. Jin J, Allemang M, McHenry Ch. Levothyroxine replacement dosage determination after thyroidectomy. Am J Surg. 2013; 205: 360-364.
9. Mapas de la situación nutricional en Colombia. http:// son_offices/wfp186725.pdf
10. Kabadi UM. Influence of age on optimal daily levothyroxine dosage in patients with primary hypothyroidism grouped according to etiology. South Med J. 1997; 90(9):920-4.
11. Kabadi UM, Kabadi MM. Serum thyrotropin in primary hypothyroidism: a reliable and accurate predictor of optimal daily levothyroxine dose. Endocr Pract. 2001; 7(1): 16-18.
12. Jouklaas J. Sex and age differences in levothyroxine dosage requirement. Endocr Pract. 2010; 16:71-79.
13. Hennesey J. Generics vs name brand L- thyroxine products: ¿interchangeable or still not? J Clin Endocrinol Metab. 2013; 98(2):511-14.
14. Centanni M. Thyroxine treatment: absorption, malabsorption, and novel therapeutic approaches. Endocrine. 2013; 43 (1):8-9.
15. Centanni M, Gargano L, Canettieri G, Viceconti N, Franchi A, Delle Fave G, et al. Thyroxine in goiter, Helicobacter pylori infection, and chronic gastritis. N Engl J Med. 2006; 354(17):1787-95.
16. Fazylov R, Soto E, Cohen S, Merola S. Laparoscopic Roux- en-Y gastric bypass surgery on morbidly obese patients with hypothyroidism. Obes Surg. 2008; 18(6):644-7.
17. Rubio IG, Galrão AL, Santo MA, Zanini AC, Medeiros-Neto G. Levothyroxine absorption in morbidly obese patients before and after Roux-En-Y gastric bypass (RYGB) surgery. Obes Surg. 2012; 22(2):253-8.
18. Radaeli R, Diehl L. Increased levothyroxine requirement in a woman with previously well-controlled hypothyroidism and intestinal giardiasis. Arq Bras Endocrinol Metab;55(1):81-84, Feb. 2011.
19. Sachmechi I, Reich DM, Aninyei M, Wibowo F, Gupta G, Kim PJ. Effect of proton pump inhibitors on serum thyroid-stimulating hormone level in euthyroid patients treated with levothyroxine for hypothyroidism. Endocr Pract 2007; 13 (4): 345-350.
20. Liwanpo L, Hershman JM. Conditions and drugs interfering with thyroxine absorption. Best Pract Res Clin Endocrinol Metab 2009; 23 (6): 781-92.
21. Campbell NR, Hasinoff BB, Stalts H, Rao B, Wong NC. Ferrous sulfate reduces thyroxine efficacy in patients with hypothyroidism. Ann Intern Med.1992; 117(12):1010-3.
22. Sherman SI, Tielens ET, Ladenson PW. Sucralfate causes malabsorption of L-thyroxine. Am J Med. 1994; 96(6):531-5.
23. Mersebach H, Rasmussen AK, Kirkegaard L, Feldt-Rasmussen U. Intestinal adsorption of levothyroxine by antacids and laxatives: case stories and in vitro experiments. Pharmacol Toxicol. 1999; 84(3):107-9.
24. Zamfirescu I, Carlson HE. Absorption of levothyroxine when coadministered with various calcium formulations. Thyroid. 2011; 21(5):483-6.
25. John-Kalarickal J, Pearlman G, Carlson HE. New medications which decrease levothyroxine absorption. Thyroid. 2007; 17(8):763-5.
26. Diskin CJ, Stokes TJ, Dansby LM, Radcliff L, Carter TB. Effect of phosphate binders upon TSH and L-thyroxine dose in patients on thyroid replacement. Int Urol Nephrol. 2007; 39(2):599-602.
27. Garwood CL, Van Schepen KA, McDonough RP, Sullivan AL. Increased thyroid-stimulating hormone levels associated with concomitant administration of levothyroxine and raloxifene. Pharmacotherapy. 2006; 26 (6):881-5.
28. Filippatos TD, Derdemezis CS, Gazi IF, Nakou ES, Mikhailidis DP, Elisaf MS. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 2008; 31(1):53-65.
29. Ojomo KA, Schneider DF, Reiher AE, Lai N, Schaefer S, Chen H, Sippel RS. Using body mass index to predict optimal thyroid dosing after thyroidectomy. J Am Coll Surg. 2013: 216(3), 454-60.

Authors must state that they reviewed, validated and approved the manuscript's publication.  Moreover, they must sign a model release that should be sent.  A copy may be reviewed here




Download data is not yet available.